Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 63(5): 1188-1195, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38437296

RESUMO

The determination of birefringence (magnitude and axis orientation) of optical materials is of significant interest in various fields. In the case of composite samples, this task becomes complicated and time-consuming; therefore, a partially automated procedure for reconstructing birefringence spatial distribution becomes valuable. Herein, we propose a procedure to reconstruct the spatial distributions of the retardance and optical axis orientation in a geological thin section from sparse quantitative birefringence measurements, using automatic boundary detection on cross-polarized light microscopy images. We examine two particular areas on the selected geological thin section: one that presents a uniaxial crystal with a circular cross-section of its refractive index ellipsoid and the other with grains of varying orientations. The measurement gives the orientation of the grain's optical axis both in and out of the plane of the thin section, which explains the qualitative observations with the cross-polarized light microscope. Future work will connect the measured orientation of the rock thin section with its 3D geological orientation in the field.

2.
R Soc Open Sci ; 10(6): 230059, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37293355

RESUMO

Book production by medieval scriptoria have gained growing interest in recent studies. In this context, identifying ink compositions and parchment animal species from illuminated manuscripts is of great importance. Here, we introduce time-of-flight secondary ion mass spectrometry (ToF-SIMS) as a non-invasive tool to identify both inks and animal skins in manuscripts, at the same time. For this purpose, both positive and negative ion spectra in inked and non-inked areas were recorded. Chemical compositions of pigments (decoration) or black inks (text) were determined by searching for characteristic ion mass peaks. Animal skins were identified by data processing of raw ToF-SIMS spectra using principal component analysis (PCA). In illuminated manuscripts from the fifteenth to sixteenth century, malachite (green), azurite (blue), cinnabar (red) inorganic pigments, as well as iron-gall black ink, were identified. Carbon black and indigo (blue) organic pigments were also identified. Animal skins were identified in modern parchments of known animal species by a two-step PCA procedure. We believe the proposed method will find extensive application in material studies of medieval manuscripts, as it is non-invasive, highly sensitive and able to identify both inks and animal skins at the same time, even from traces of pigments and tiny scanned areas.

3.
J Colloid Interface Sci ; 647: 233-245, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37253292

RESUMO

Manipulation of light has been proved to be a promising strategy to increase light harvesting in solar-to-chemical energy conversion, especially in photocatalysis. Inverse opal (IO) photonic structures are highly promising for light manipulation as their periodic dielectric structures enable them to slow down light and localize it within the structure, thereby improving light harvesting and photocatalytic efficiency. However, slow photons are confined to narrow wavelength ranges and hence limit the amount of energy that can be captured through light manipulation. To address this challenge, we synthesized bilayer IO TiO2@BiVO4 structures that manifested two distinct stop band gap (SBG) peaks, arising from different pore sizes in each layer, with slow photons available at either edge of each SBG. In addition, we achieved precise control over the frequencies of these multi-spectral slow photons through pore size and incidence angle variations, that enabled us to tune their wavelengths to the electronic absorption of the photocatalyst for optimal light utilization in aqueous phase visible light photocatalysis. This first proof of concept involving multi-spectral slow photon utilization enabled us to achieve up to 8.5 times and 2.2 times higher photocatalytic efficiencies than the corresponding non-structured and monolayer IO photocatalysts respectively. Through this work, we have successfully and significantly improved light harvesting efficiency in slow photon-assisted photocatalysis, the principles of which can be extended to other light harvesting applications.

4.
J Colloid Interface Sci ; 634: 290-299, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36535165

RESUMO

Periodic structures with alternating refractive indices such as inverse opal photonic crystals are capable of reducing the group velocity of light such that this slowed light can be more efficiently harvested for highly enhanced solar energy conversion. However, the generation, the manipulation and, in particular, the practical applications of these slow photons remain highly challenging. Here, we report the first proof of concept on the ability to control, in an inverse opal TiO2-BiVO4 hetero-composite, the transfer of slow photons generated from the inverse opal photonic structure to the photocatalytically active BiVO4 nanoparticles for highly enhanced visible light photoconversion. Tuning the slow photon frequencies, in order to accommodate the electronic band gap of BiVO4 for slow photon transfer and for significantly improved light harvesting, was successfully achieved by varying the structural periodicity (pore size) of inverse opal and the light incidence angle. The photocatalytic activity of BiVO4 in all inverse opal structures, promoted by slow photon effect, reached up to 7 times higher than those in the non-structured compact films. This work opens new avenues for the practical utilization of slow photon effect under visible light in photocatalytic energy-related applications like water splitting and carbon dioxide reduction and in photovoltaics.

5.
Appl Opt ; 61(27): 8081-8090, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36255939

RESUMO

Accuracy and ambiguities in retardance and optical axis orientation spatial measurements are analyzed in detail in the context of the birefringence imaging method introduced by Shribak and Oldenbourg [Appl. Opt.42, 3009 (2003)APOPAI0003-693510.1364/AO.42.003009]. An alternative formula was derived in order to determine the optical axis orientation more accurately, and without indetermination in the case of a quarter-wave plate sample. Following Shribak and Oldenbourg's experimental configuration using two variable retarders, a linear polarizer, and five polarization probes, we examined the effect of the swing angle χ, which selected the ellipticity of each polarization state, on the accuracy of retardance (Δ) and axis orientation (ϕ) measurements. Using a quarter-wave plate, excellent agreement between measured and expected values was obtained for both the retardance and the axis orientation, as demonstrated by the statistical analysis of Δ and ϕ spatial distributions. The intrinsic ambiguity in the determination of Δ and ϕ for superimposed layers of transparent anisotropic cello-tape is discussed in detail, and solutions are provided to remove this ambiguity. An example of application of the method on geological samples is also presented. We believe our analysis will guide researchers willing to exploit this long-standing method in their laboratories.

6.
Opt Express ; 30(2): 1167-1181, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35209282

RESUMO

Complete absorption of electromagnetic waves is paramount in today's applications, ranging from photovoltaics to cross-talk prevention into sensitive devices. In this context, we use a genetic algorithm (GA) strategy to optimize absorption properties of periodic arrays of truncated square-based pyramids made of alternating stacks of metal/dielectric layers. We target ultra-broadband quasi-perfect absorption of normally incident electromagnetic radiations in the visible and near-infrared ranges (wavelength comprised between 420 and 1600 nm). We compare the results one can obtain by considering one, two or three stacks of either Ni, Ti, Al, Cr, Ag, Cu, Au or W for the metal, and poly(methyl methacrylate) (PMMA) for the dielectric. More than 1017 configurations of geometrical parameters are explored and reduced to a few optimal ones. This extensive study shows that Ni/PMMA, Ti/PMMA, Cr/PMMA and W/PMMA provide high-quality solutions with an integrated absorptance higher than 99% over the considered wavelength range, when considering realistic implementation of these ultra-broadband perfect electromagnetic absorbers. Robustness of optimal solutions with respect to geometrical parameters is investigated and local absorption maps are provided. Moreover, we confirm that these optimal solutions maintain quasi-perfect broadband absorption properties over a broad angular range when changing the inclination of the incident radiation. The study also reveals that noble metals (Au, Ag, Cu) do not provide the highest performance for the present application.

7.
Appl Opt ; 61(33): 10062, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36606839

RESUMO

This publisher's note corrects an error in Appl. Opt.61, 8081 (2022)APOPAI0003-693510.1364/AO.463657.

8.
R Soc Open Sci ; 8(6): 210210, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34109043

RESUMO

Biocodicological analysis of parchments from manuscript books and archives offers unprecedented insight into the materiality of medieval literacy. Using ZooMS for animal species identification, we explored almost the entire library and all the preserved single leaf charters of a single medieval Cistercian monastery (Orval Abbey, Belgium). Systematic non-invasive sampling of parchment collagen was performed on every charter and on the first bifolium from every quire of the 118 codicological units composing the books (1490 samples in total). Within the genuine production of the Orval scriptorium (26 units), a balanced use of calfskin (47.1%) and sheepskin (48.5%) was observed, whereas calfskin was less frequent (24.3%) in externally produced units acquired by the monastery (92 units). Calfskin was preferably used for higher quality manuscripts while sheepskin tends to be the standard choice for 'ordinary' manuscript book production. This finding is consistent with thirteenth-century parchment accounts from Beaulieu Abbey (England) where calfskin supply was more limited and its price higher. Our study reveals that the making of archival documents does not follow the same pattern as the production of library books. Although the five earliest preserved charters are made of calfskin, from the 1230s onwards, all charters from Orval are written on sheepskin.

9.
Faraday Discuss ; 223: 63-80, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32719833

RESUMO

Eggshells are essential for the reproduction of birds since the optical properties of shells may have an impact on biological functions such as heating and UV protection, recognition by parents or camouflage. Whereas ultraviolet reflection by some bird eggshells has been recently described, its physical origin remains poorly understood. In this study, we identified a porous structure in eggshells. Using Mie scattering modelling, we found it was most likely responsible for reflectance peaks (intensities of ca. 20-50%) observed in the near-UV range. These peaks were observed by spectrophotometric measurements from eggshells of several breeds of hen, one breed of duck and one breed of quail. This optical response was interpreted in terms of the distinct visual perception of hens and humans: eggshells appearing achromatic for humans proved to be chromatic for hens. Fluorescence emission from these eggs was also characterised and attributed to the presence of protoporphyrin IX and biliverdin IXα in the shells. Electron microscopy observations revealed the presence of pores within the so-called calcified shell part (i.e., at depths between ca. 20 µm and ca. 240 µm from the eggshell's outer surface). Mercury intrusion porosimetry allowed us to quantify the pore size distribution. Simulations of the UV response of this porous structure using Mie scattering theory as well as an effective approach accounting for multiple scattering indicate that these pores are responsible for the backscattering peaks observed in the UV range, in the case of beige hen eggshells. Due to the similarities between the pore size distributions observed for beige hen eggshells and other investigated poultry eggshells, we expect Mie backscattering to be the origin of the UV response of the eggshells of many other bird species.


Assuntos
Casca de Ovo/fisiologia , Raios Ultravioleta , Animais , Biliverdina/química , Aves , Casca de Ovo/ultraestrutura , Humanos , Microscopia Eletrônica , Protoporfirinas/química , Espalhamento de Radiação , Análise Espectral/métodos , Percepção Visual
10.
Opt Express ; 27(22): 32308-32322, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31684446

RESUMO

Perovskite solar cells have shown a tremendous interest for photovoltaics since the past decade. However, little is known on the influence of light management using photonic crystals inside such structures. We present here numerical simulations showing the effect of photonic crystal structuring on the integrated quantum efficiency of perovskite solar cells. The photo-active layer is made of an opal-like perovskite structure (monolayer, bilayer or trilayer of perovskite spheres) built in a T i O 2 matrix. Fano resonances are exploited in order to enhance the absorption, especially near the bandgap of perovskite material. The excitation of quasi-guided modes inside the absorbing spheres enhances the integrated quantum efficiency and the photonic enhancement factor. More specifically, a photonic enhancement factor as high as 6.4% is predicted in the case of spheres monolayer compared to an unstructured perovskite layer. The influences of sphere's radius and incident angle on the absorbing properties are also estimated. Those numerical results can be applied to the nascent field of photonic structuring inside perovskite solar cells.

11.
Beilstein J Nanotechnol ; 10: 1768-1777, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31501748

RESUMO

Background: Numerous optical applications of nano-objects require a dispersion of the nanoparticles in a dielectric matrix. In order to achieve high particle concentrations, one can, as an alternative, directly grow the particles in a polymer or an inorganic film by, e.g., thermal annealing. Results: Simple laser reflection experiments showed that this growth process induced light scattering at the film/air interface. We report on this phenomenon, considering the growth dynamics of gold nanoparticles in a polymer film. The scattering of light was studied by measuring the bi-directional reflection distribution function. In parallel with the observation of enhanced scattering, imaging ellipsometry in dynamics mode showed that local values of the ellipsometric angles Ψ and Δ were strongly modified by the annealing process. Conclusion: A diffraction pattern corresponding to local modifications of the optical properties of the film gradually appeared, which turned out to be the signature of the growth of the Au nanoparticles. Moreover, the monitoring of the statistical distribution of the ellipsometric angles during annealing helped evidencing two regimes in the dynamics of the nanoparticle growth and in the optical response of the nanocomposite.

12.
PLoS One ; 14(2): e0201424, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30794540

RESUMO

The reliquary of Jacques de Vitry, a prominent clergyman and theologian in the early 13th century, has experienced several transfers over the last centuries, which seriously question the attribution of the remains to the late Cardinal. Uncertainty about the year of his birth poses an additional question regarding his age at death in 1240. The reliquary, located in the Saint Marie d'Oigines church, Belgium, was reopened in 2015 for an interdisciplinary study around his relics as well as the Treasure of Oignies, a remarkable cultural heritage notably built from Jacques de Vitry's donation. Anthropological, isotopic and genetic analyses were performed independently on the remains found in the reliquary. Results of the analyses provided evidence that the likelihood that these remains are those of Jacques de Vitry is very high: the remains belong to the same human male individual and the historical tradition about his age is confirmed. In addition, a separate relic (left tibia) was analysed and found to match with the remains of the reliquary (right tibia). The unique Jacques de Vitry's mitre, made of parchment, was sampled non-destructively and the extracted parchment collagen was analysed by a proteomic method in order to determine the animal species. The results showed that, surprisingly, not all parts of the mitre were made from the same species. All together, these findings are expected to fertilize knowledge carried by historical tradition around the relics of Jacques de Vitry and his related cultural heritage.


Assuntos
Autopsia/métodos , Clero , Proteômica/métodos , Religião e Ciência , Teologia/história , Animais , Antropologia Cultural , Bélgica , Cromossomos Humanos Y/genética , Clero/história , Testes Genéticos , História Medieval , Humanos , Estudos Interdisciplinares , Masculino , Datação Radiométrica
13.
Sci Rep ; 9(1): 1825, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30755703

RESUMO

Recently, historical and conservation studies have attached an increasing importance to investigating the materials used in historic documents. In particular, the identification of the animal species from which parchments are made is of high importance and is currently performed by either genetic or proteomic methods. Here, we introduce an innovative, non-invasive optical method for identifying animal species based on light-parchment interaction. The method relies on conservation of light energy through reflection, transmission and absorption from the sample, as well as on statistical processing of the collected optical data. Measurements are performed from ultraviolet (UV) to near-infrared (NIR) spectral ranges by a standard spectrophotometer and data are processed by Principal Component Analysis (PCA). PCA data from modern parchments, made of sheep, calf and goat skins, are used as a database for PCA analysis of historical parchments. Using only the first two principal components (PCs), the method confirmed visual diagnostics about parchment appearance and aging, and was able to recognise the origin species of historical parchment of among database clusters. Furthermore, taking into account the whole set of PCs, species identification was achieved, with all results matching perfectly their proteomic counterparts used for method assessment. The validated method compares favourably with genetic and proteomic methods used for the same purpose. In addition to animals' proteomic and genetic signatures, a unique "optical fingerprint" of the parchments' origin species is revealed here. This new method is non-invasive, straightforward to implement, potentially cheap and accessible to scholars and conservators, with minimal training. In the context of cultural heritage, the method could help solving questions related to parchment production and, more generally, medieval writing production.


Assuntos
Arqueologia/métodos , Papel , Proteômica/métodos , Animais , História Medieval , Análise de Componente Principal , Espectrofotometria
14.
Interface Focus ; 9(1): 20180052, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30603071

RESUMO

Upon illumination by ultraviolet light, many animal species emit light through fluorescence processes arising from fluorophores embedded within their biological tissues. Fluorescence studies in living organisms are however relatively scarce and so far limited to the linear regime. Multiphoton excitation fluorescence analyses as well as nonlinear optical techniques offer unique possibilities to investigate the effects of the local environment on the excited states of fluorophores. Herein, these techniques are applied for the first time to study of the naturally controlled fluorescence in insects. The case of the male Hoplia coerulea beetle is investigated because the scales covering the beetle's elytra are known to possess an internal photonic structure with embedded fluorophores, which controls both the beetle's coloration and the fluorescence emission. An intense two-photon excitation fluorescence signal is observed, the intensity of which changes upon contact with water. A third-harmonic generation signal is also detected, the intensity of which depends on the light polarization state. The analysis of these nonlinear optical and fluorescent responses unveils the multi-excited states character of the fluorophore molecules embedded in the beetle's elytra. The role of form anisotropy in the photonic structure, which causes additional tailoring of the beetle's optical responses, is demonstrated by circularly polarized light and nonlinear optical measurements.

15.
Adv Mater ; 29(17)2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28165167

RESUMO

Solar light is widely recognized as one of the most valuable renewable energy sources for the future. However, the development of solar-energy technologies is severely hindered by poor energy-conversion efficiencies due to low optical-absorption coefficients and low quantum-conversion yield of current-generation materials. Huge efforts have been devoted to investigating new strategies to improve the utilization of solar energy. Different chemical and physical strategies have been used to extend the spectral range or increase the conversion efficiency of materials, leading to very promising results. However, these methods have now begun to reach their limits. What is therefore the next big concept that could efficiently be used to enhance light harvesting? Despite its discovery many years ago, with the potential for becoming a powerful tool for enhanced light harvesting, the slow-photon effect, a manifestation of light-propagation control due to photonic structures, has largely been overlooked. This review presents theoretical as well as experimental progress on this effect, revealing that the photoreactivity of materials can be dramatically enhanced by exploiting slow photons. It is predicted that successful implementation of this strategy may open a very promising avenue for a broad spectrum of light-energy-conversion technologies.

16.
Proc Biol Sci ; 283(1845)2016 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-28003460

RESUMO

The scales covering the elytra of the male Hoplia coerulea beetle contain fluorophores embedded within a porous photonic structure. The photonic structure controls both insect colour (reflected light) and fluorescence emission. Herein, the effects of water-induced changes on the fluorescence emission from the beetle were investigated. The fluorescence emission peak wavelength was observed to blue-shift on water immersion of the elytra whereas its reflectance peak wavelength was observed to red-shift. Time-resolved fluorescence measurements, together with optical simulations, confirmed that the radiative emission is controlled by a naturally engineered photonic bandgap while the elytra are in the dry state, whereas non-radiative relaxation pathways dominate the emission response of wet elytra.


Assuntos
Exoesqueleto/fisiologia , Besouros/fisiologia , Cor , Meio Ambiente , Fluorescência , Água , Animais , Masculino , Fótons
17.
Arthropod Struct Dev ; 45(6): 509-518, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27725254

RESUMO

Charidotella ambita offers a unique opportunity for unambiguously locating its gold reflector by comparing the structure of reflecting and non-reflecting cuticle of the elytron and pronotum. Using light microscopy and TEM, the reflector was located underneath the macrofiber endocuticle just above the epidermis. The reflector is a multilayer comprising up to 50 bilayers alternating high and low density layers parallel to the surface of the cuticle. It is chirped, i.e., showing a progressive decrease in layer thickness from approximately 150 nm-100 nm across its depth. The high density layers in contact with the endocuticle fuse to the last macrofiber when the reflector is interrupted by a trabecula, demonstrating their cuticular nature. Simulated reflectance spectra from models of the multilayer matched the reflection spectra measured on the major gold patch of the elytron of living specimens. Previous reports in adult insects exhibiting metallic colors located their reflector in the upper strata and structures of the cuticle, i.e., epicuticle, exocuticle, scales and hairs. Thus, the endocuticular location of the reflector in C. ambita (and other tortoise beetles) appears unique for adult insects. Gold reflection appears in C. ambita only when the synthesis of the macrolayer endocuticle is complete, which may take up to 2 weeks. The development of the gold reflector coincides with the start of mating behavior, possibly suggesting a signaling function in conspecific recognition once sexual maturity has been reached.


Assuntos
Besouros/ultraestrutura , Exoesqueleto/ultraestrutura , Animais , Cor , Microscopia Eletrônica de Transmissão
18.
Opt Express ; 24(11): 12267-80, 2016 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-27410142

RESUMO

Photonic structures encased by a permeable envelope give rise to iridescent blue color in the scales covering the male Hoplia coerulea beetle. This structure comprises a periodic porous multilayer. The color of these scales is known for changing from blue to green upon contact with water despite the presence of the envelope. This optical system has been referred to as a photonic cell due to the role of the envelope that mediates fluid exchanges with the surrounding environment. Following from previously studied liquid-induced changes in the color appearance of H. coerulea, we measured vapor-induced color changes in its appearance. This response to vapor exposure was marked by reflectance redshift and an increase in peak reflectance intensity. Different physico-chemical processes were investigated to explain the increase in reflectance intensity, a property not usually associated with vapor-induced optical signature changes. These simulations indicated the optical response arose from physisorption of a liquid film on the beetle scales followed by liquid penetration through the envelope and the filling of micropores within the body of the photonic structure.


Assuntos
Óptica e Fotônica , Volatilização , Animais , Besouros , Cor , Gases , Masculino
19.
Bioinspir Biomim ; 11(3): 036011, 2016 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-27159922

RESUMO

The unique architecture of iridescent Morpho butterfly scales is known to exhibit different optical responses to various vapours. However, the mechanism behind this phenomenon is not fully quantitatively understood. This work reports on process developments in the micro-fabrication of a Morpho-inspired photonic structure in atomic layer deposited (ALD) materials in order to investigate the vapour optical sensitivity of such artificial nanostructures. By developing recipes for dry and wet etching of ALD oxides, we micro-fabricated two structures: one combining Al2O3 and TiO2, and the other combining Al2O3 and HfO2. For the first time, we report the optical response of such ALD Morpho-like structures measured under a controlled flow of either ethanol or isopropyl alcohol (IPA) vapour. In spite of the small magnitude of the effect, the results show a selective vapour response (depending on the materials used).


Assuntos
Álcoois/química , Materiais Biomiméticos/síntese química , Borboletas/química , Colorimetria/instrumentação , Nanopartículas Metálicas/química , Asas de Animais/química , Álcoois/análise , Animais , Biomimética/instrumentação , Biomimética/métodos , Colorimetria/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Nanopartículas Metálicas/ultraestrutura , Óxidos/química , Refratometria/instrumentação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
Sci Rep ; 6: 19322, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26758681

RESUMO

The structural colour of male Hoplia coerulea beetles is notable for changing from blue to green upon contact with water. In fact, reversible changes in both colour and fluorescence are induced in this beetle by various liquids, although the mechanism has never been fully explained. Changes enacted by water are much faster than those by ethanol, in spite of ethanol's more rapid spread across the elytral surface. Moreover, the beetle's photonic structure is enclosed by a thin scale envelope preventing direct contact with the liquid. Here, we note the presence of sodium, potassium and calcium salts in the scale material that mediate the penetration of liquid through putative micropores. The result leads to the novel concept of a "photonic cell": namely, a biocompatible photonic structure that is encased by a permeable envelope which mediates liquid-induced colour changes in that photonic structure. Engineered photonic cells dispersed in culture media could revolutionize the monitoring of cell-metabolism.


Assuntos
Besouros/fisiologia , Cor , Pigmentação , Animais , Besouros/ultraestrutura , Fluorescência , Masculino , Pigmentos Biológicos/química , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...